Spasticity Quantification Preliminary Report

1

Olivia Sutton

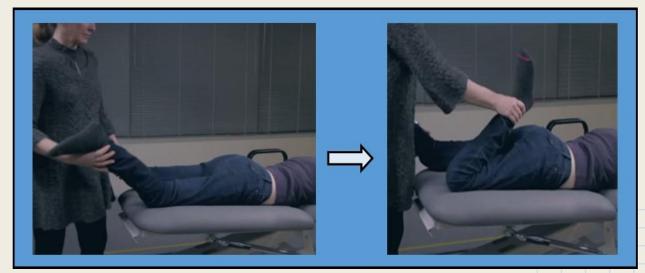
with Tony Wang and Charles Wu for client Dr. John Engsberg

What is Spasticity?

Spasticity: A velocity dependent resistance to passive stretch

Cerebral Palsy (CP): 1/500 children are affected. Of those, 80% experience spasticity (NIH, 2014)

How do you measure it?


Modified Ashworth Scale

Grade	Description
0	No increase in muscle tone
1	Slight increase in muscle tone, manifested by a catch or by minimal resistance at the end of the range of motion (ROM) when the affected part(s) is moved in flexion or extension
1+	Slight increase in muscle tone, manifested by a catch, followed by minimal resistance throughout the remainder (less than half) of the ROM
2	More marked increase in muscle tone through most of the ROM, but affected part(s) easily moved
3	Considerable increase in muscle tone, passive movement difficult
4	Affected part(s) rigid in flexion or extension
9	Unable to test

How do you measure it?

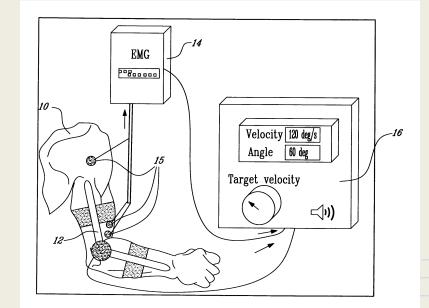
Modified Ashworth Scale:

- 1) Physician stretches leg over range of motion at varying velocities
- 2) Subjectively rank spasticity on scale of 0 to 4

SCIREproject, 2014

Why do we need to measure it?

- Treatment is a spectrum from physical therapy to invasive surgery
- Measure of spasticity necessary for objective treatment planning


Project Scope

Design a device or software needed to measure the three major parameters that factor into spasticity: range of motion, velocity, and force

Existing Solutions - Electromyography Measurements (EMG)

EMG

- Test:
 - EMG electrodes and goniometer used on joint
- Results:
 - output real-time velocity and angle measurements
- Limitations:
 - Fickle system, precise setup.
 Some setups are static tests for a dynamic process

Patent US20080312549 A1

Existing Solutions - Objective Spasticity Measure

Ansari, N. 2007:

- Test:
 - Move arm through constant force, measure velocity reduction
- Results:
 - Patients with higher spasticity have a higher reduction in velocity
- Limitations:
 - Study fails to accurately measure patients in upper ranges of spasticity
 - Measuring instantaneous velocity with high degree of accuracy is difficult in clinical setting

Existing Solutions - Objective Spasticity Measure

Peng, Q. 2011:

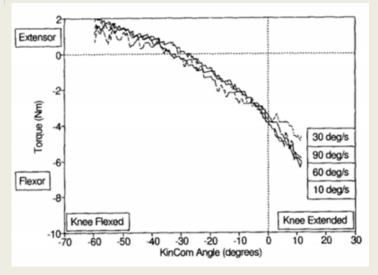
- Test:
 - Move ankle joint up and down through its range of motion, measuring force and orientation
- Results:
 - Plot force vs. angle and observe "catch"
- Limitations:
 - Provided comprehensive data, but failed to arrive at measurable scale to quantify degree of spasticity

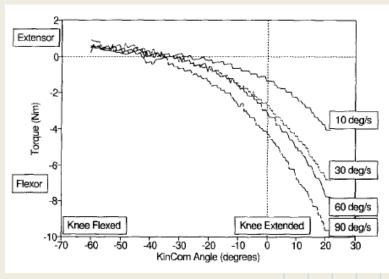
Existing Solutions - Objective Spasticity Measure

Engsberg, J. 1996:

- Test:
 - Rotate leg about the knee joint at constant velocity, tracking the force required through entire range of motion. Calculate total work done by leg at various velocities

Results:


- Normal patients: 0
- Spastic patients: >0
- \circ More spastic \rightarrow higher rating


KinCom Corporate Website, 2011

Objective Spasticity Measure

Engsberg 1996 (cont)

Non-spastic Patient Torque-Angle graph, for different angular velocities

Spastic Patient Torque-Angle graph, for

different speeds

Design Requirements

Characteristic	Specification					
Weight	Less than 1 kg					
Size	No larger than 21.6 cm x 19 cm x 5 cm					
Cost	Less than \$200					
Portability	Easily transported between patient rooms Does not need constant external power supply					
Battery Life	Must not require charging over a period of 8 hours					

Design Requirements

Characteristic	Specification					
Ease-of-Use	Will not require more than 10 minutes of training for a physician to effectively use.					
Usage Time	Length of test for a single joint should not take more than 5 minutes					
Data Storage	Less than 0.3 megabytes per test					
Accuracy	Able to differentiate between different levels of spasticity more accurately than the Modified Ashworth Scale					
Precision	Less than 10% error between repeated trials of the same patient on the same joint					

Data Transmission¹

	Bluetooth	Wi-Fi				
Frequency	2.4GHz	2.4, 3.6, 5 GHz				
Cost	Low	High				
Bandwidth	Low (800 Kbps)	High (11Mbps)				
Hardware Requirement	Bluetooth adaptor	Wireless adaptors				
Range	5-30 meters	32 meters indoors				
Power Consumption	Low	High				
Bit-rate	2.1 Mbps	600 Mbps				

1. "Bluetooth vs. Wi-Fi." *Bluetooth vs Wi-Fi.* <u>http://www.diffen.</u> <u>com/difference/Bluetooth_vs_Wifi</u>

Preliminary Analysis - Data Transmission Calculations

Data Transmission Speed:

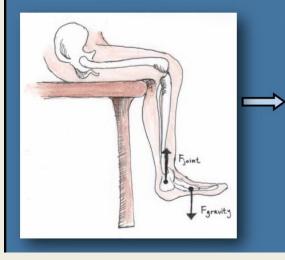

- 300kb of data per test
- 800kb per second bandwidth (Bluetooth)
- 300/800 = 0.375 seconds for data transmission
- 11,000kb per second bandwidth (Wireless)
- 300/11,000 = 0.027 seconds for data transmission

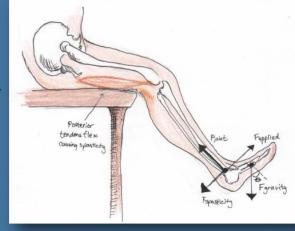
Preliminary Analysis: Components of Spasticity

Range of Motion

Velocity

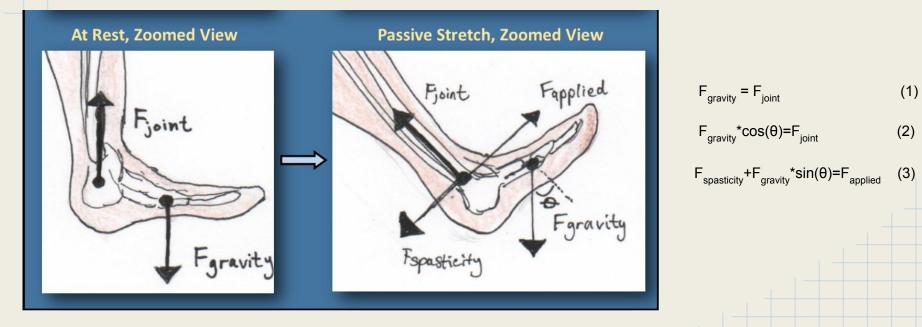
Force


University of Maryland Rehabilitation and Orthopedic Institute, 2008


Preliminary Analysis

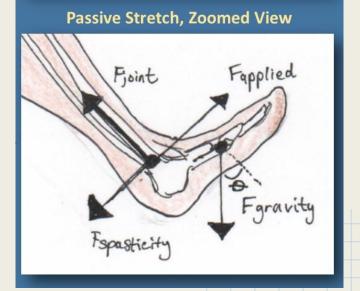
Spasticity Free Body Diagram

At Rest


During Passive Muscle Stretch

F _{gravity} = F _{joint}	(1)
$F_{gravity}^{*}\cos(\theta)=F_{joint}$	(2)
$F_{spasticity} + F_{gravity} * sin(\theta) = F_{applied}$	(3)

Preliminary Analysis


Preliminary Analysis

For a spastic patient's foot moving at an angular velocity of 60 deg/s extended at 70 degrees from vertical:

$$F_{applied} = 26.67 \text{ N} \text{ (measured)}$$

 $F_{joint} = Fg*cos(70)$ $F_{joint} = 4.86 N$

$$F_{\text{spastic}} = F_{\text{applied}} - (F_{\text{g}}^{*} \sin(70))/2$$

$$F_{\text{spastic}} = 19.99 \text{ N}$$

Design Schedule

ACTIVITY	AUG	G SEPTEMBER		OCTOBER				NOVEMBER				DEC			
	25	1	8	15	22	29	6	13	20	27	3	10	17	24	1
Team Formation															
Project Selection															
Project Scope															
Initial Research															
Exploring Existing Solutions															
Preliminary Report Due															
Preliminary Oral Report Due															
Website															
Software Research															
Hardware Research															
Design Analysis															
Identify Best Solution															
Identify Components Necessary															
Program Device															
Diagram Necessary Hardware															
Progress Report Due															
Progress Oral Report Due															
Implement Hardware & Software															
Device Analysis															
DesignSafe															
Final Report Due															
Final Oral Report Due															
Weekly Meetings With Client															

Group Responsibilities

ACTIVITY	Tony	Olivia	Charles
Idea Generation			
Literature Research			
Intellectual Property			
Force Transducer			
Wearable Equipment			
Software Design			
User Interface			
Mathematical Calculations			
Testing			
Appointed Contact with Client			
Website			
Preliminary Presentation			
Progress Presentation			
Final Presentation			

Acknowledgements

Dr. Jack Engsberg Tony Wang Charles Wu Dr. Joseph Klaesner Anna Boone Dr. John Standeven